การประเมินสายต้นมะม่วงแก้วเพื่อการแปรรูปเป็น มะม่วงอบแห้ง

Evaluation of Kaew Mango Clones for Processing of Dehydrated Fruit

ลำพอง แต้มครบุรี" และ ธวัชััย รัตน์ชเลค ${ }^{11}$
Lampong Taemkhonburi' and Tavatchai Randanachaless ${ }^{1 /}$

Abstract

Kaew cultivar is the most important processing mango in Thailand. The selection of mango clone for fruit processing industry is one of the alternative strategies to enhance its competitiveness in the market. The objective of this research was to evaluate Kaew mango clones suitable for the dehydrated fruit. The 5 ongoing selecting clones were used in this study. The fruits of all selected clones were directly harvested from the growers' orchard in provinces of the Upper North. Both fully mature and ripen fruits were taken to measure and analyze in the laboratory. Thereafter, the fully mature fruits of all clones were processed to be dehydrated mango at Lampang Agricultural Research and Training Centre Rajamangala University of Technology, Lanna, Lampang province. The product was proved its quality in accordance with the Thai Industrial Standard for dehydrated mango (TIS 919-2532). The required measurement was moisture content for dehydrated fruit in particular. The products were finally assessed the organoleptic quality by using hedonic scale method with 15 trained panelists. The result yielded that mango cv. Kaew MCC75 was the promising clone for dehydrated fruit. This clone eamed high scores from color, flavor, taste, texture and the highest scores from overall acceptance. The outstanding characteristics suitable for processing included its medium size (4-6 fruits $/ \mathrm{kg}$) attractive and uniform color with dark green peel, high fruit firmness ($14 \mathrm{~kg} / \mathrm{cm}^{2}$), relative high TSS ($8.72{ }^{\circ}$ Brix), orangish yellow pulp, pH of pulp 3.54 , high flesh weight (70.4%), and small seed in the fully mature fruit. The appropriate characteristics in particular for dehydrated product were the high remained pulp dry weight 453 g from $1,000 \mathrm{~g}$ of fresh weight. The finished product was deep yellow color, medium moisture content of 13.7%, good flavor, good taste and good texture. This study also confirms that MCC75 or Kaew Chiang Mai is the suitable processing clone for farmers in the Upper North.

Keywords: mango cv. Kaew, dehydrated fruit, clonal evaluation

[^0]
Abstract

บทคัดย่อ: มะม่วงแก้วเป็นพันธุ์เพื่อการแปรรูปสำคัญที่สุดของประเทศไทย การเพิ่มขีดความสามารถในการแข่งขันใน ตลาดให้กับจุตสาหกรรมการแปรรูปผลไม้ด้วยการหาสายต้นที่เหมาะสมเพื่อการแปรรูป จึงเป็นกลยุทธทางเลือกหนึ่งที่ สามารถตอบสนองเป้าหมายดังกล่าวได้ งานวิจัยนี้จึงมีวัตถุประสงค์ เพื่อประเมินสายต้นมะม่วงแก้วที่มีคุณลักษณะ เหมาะสมต่อการแปรููปเป็นมะม่วงอบแห้ง ศึกษาโดยใช้มะม่วงแก้ว 5 สายต้น ที่อยู่ระหว่างการปรับปรุงพันธุ์ เก็บเกี่ยว มะม่วงสายต้นคัดโดยตรงจากสวนของเกษตรกรในหลายจังหวัดภาคเหนือตอนบน นำผลที่แก่จัดและผลสุกมาทำการ วัดและวิเคราะห์ในห้องปฏิบัติการ หลังจากนั้นนำมะม่วงผลแก่จัดทุกสายต้นมาแปรููปเป็นมะม่วงอบแห้ง ณ สถาบันวิจัยและฝึกอบรมการเกษตรลำปาง มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา จังหวัดลำปาง ตรวจสอบ คุณภาพผลิตภัณฑ์ตามเกณฑ์มาตรฐานผลิตภัณฑ์อุตสาหกรรมผลไม้อบแห้ง (มอก. 919-2532) ได้แก่ วัดเปอร์เซ็นต์ ความชื้น แล้วนำผลิตภัณฑ์มาประเมินผลด้านประสาทสัมผัสด้วยวิธี hedonic scale ใช้ผู้ประเมินที่ผ่านการฝึกอบรม 15 คน ผลจากการทดลองพบว่า มะม่วงแก้วสายต้น $M C C 75$ มีความเหมาะสมมากที่สุดถำหรับการแปรรูปเป็นมะม่วง อบแห้ง จากคะแนนด้าน สี กลิ่น รสชาติ เนื้อสัมผัส และการยอมรับโดยรวมสูงสุด จุดเด่นของสายต้นนี้เพื่อการแปรรูป โดยทั่วไปอยู่ที่ มีน้ำหนักผลปานกลาง ($4-6$ ผล/กก.) ผลแก่จัดสีผลสวย เขียวเข้ม และสม่ำเสมอ มีความแน่นเนื้อสูงวัด ได้ 14 กก./ตร.ซม. ค่า TSS ค่อนข้างสูง วัดได้ 8.72 องศาบริกซ์ เนื้อมีสีเหลืองส้ม และค่าคว่ามเป็นกรด-เบสที่ 3.54 มีสัดส่วนของน้ำหนักเนื้อสูงถึง 70.4% และเมล็ดค่อนข้างเล็ก แต่คุณลักษณะที่เหมาะสมกับการแปรรูปเป็นมะม่วง อบแห้งคือ มีน้ำหนักเนื้อเหลือหลังอบแห้งสูง 453 กรัม จากเนื้อ ก่อนอบแห้ง 1,000 กรัม ให้สีเหลืองเข้มน่ารับประทาน เหลือความชื้นในเนื้อระดับปานกลางที่ 13.7% กลิ่นหอม รสชาติดี เนื้อสัมผัสอ่อนนุ่มไม่เหนียวหรือแข็งกระด้าง จนเกินไป การศึกษานี้ยังได้ช่วยยืนยันว่า มะม่วงแก้ว $M C C 75$ หรือ แก้วเชียงใหม่ เป็นมะม่วงแปรรูปสายต้นที่ เหมาะสมสำหรับผู้ปลูกในภาคเหนือตอนบน

คำสำคัญ: มะม่วงแก้ว มะม่วงอบแห้ง การประเมินสายต้น

คำนำ

มะม่วงแก้วเป็นพันธุ์ที่มีความสำคัญสูงสุดต่อ อุตสาหกรรมแปรรูปมะม่วงของประเทศไทย เนื่องจากเป็น พันธุ์ที่มีผลผลิตออกสูตลาดมากที่สุด สูงถึง 357,963 ตัน ในปี พ.ศ. 2545 (สำนักงานส่งเสริมและพัฒนาการเกษตร เขตที่ 6,2545) เป็นพันธุ์ที่มีการผลิตกระจายอย่างกว้างขวางไปทั้งประเทศ เป็นวัตถุดิบที่มีต้นทุนการผลิตต่อ หน่วยต่ำ ราคา $2.00-5.00$ บาท/กก. สามารถใช้แปรรูปเป็น ผลิตภัณฑ์ที่มีศักยภาพแข่งขันกับสินค้าในประเภทเดียว กันได้ (ธวัชชัย และคณะ, 2545) มีคุณสมบัตีที่เหมาะสม เพื่อการแปรรูปเชิงอุตสาหกรรม ทั้งที่เป็นผลดิบและผลสุก (มณฑาทิพย์ และคณะ, 2541) มะม่วงแก้วนำมาแปรููป เป็นผลิตภัณฑ์ต่าง ๆ ได้อย่างหลากหลาย เช่น มะม่วงดอง มะม่วงอบแห้ง มะม่วงชิ้นในน้ำเชื่อม น้ำมะม่วงพร้อมดื่ม
(เนคต้ามะม่วง) มะม่วงแช่แข็ง แยมมะม่วง และไวน์ มะม่วงซึ่งทำรายได้เข้าประเทศถึง 393.3 ล้าน ในปี พ.ศ. 2545 ผลิตภัณฑ์ส่งออกที่สำคัญ คือ มะม่วงสดหรือแห้ง มะม่วงบรรจุภาชนะอัดลม มียอดสูงถึง 16,129 ตัน สร้าง รายได้เข้าประเทศถึง 146.2 ล้านบาท (กรมศุลกากร, 2545) โดยมีประเทศญี่ปุ่น มาเลเซีย ออสเตรเลีย และ สหราชอาณาจักร เป็นตลาดที่สำคัญ

มะม่วงอบแห้ง (dehydrated mango) หมายถึง มะม่วงที่นำมาผ่านกรรมวิธีตามความเหมาะสม แล้วนำ มาลดความชื้นตามต้องการ โดยกรรมวิธีธรรมชาติหรือ ใช้อุปกรณ์ที่เหมาะสม โดยจะมีการปรุงแต่งรสหวานด้วย น้ำตาลหรือไม่ก็ได้ (สำนักงานมาตรฐานผลิตภัณฑ์ อุตสาหกรรม, 2532)

การที่ประเทศไทยยังมีปริมาณการส่งออก ผลิตภัณฑ์แปรรูปจากมะม่วงแก้วค่อนข้างต่ำ สาเหตุหนึ่ง

เนื่องมาจากมะม่วงแก้วที่นำมาใช้มีความหลากหลายสูง ยังไม่ได้คัดเลือกให้เหมาะสมอย่างเจาะจงเพื่อการแปรรูป เป็นผลิตภัณฑ์ชนิดใดชนิดหนึ่งโดยเฉพาะ ดังนั้นเพื่อเป็น การแก้ไข จึงได้ศึกษาต่อเนื่องจากงานของ ธวัชชัย และ คณะ (2544) ในการคัดเลือกมะม่วงแก้วสายต้นดีที่มี คุณลักษณะเหมาะสมต่อการนำมาทำผลิตภัณฑ์อบแห้ง เพื่อการสงออก เพื่อสนับสนุนผลิตภัณฑ์แปรรูปที่มี คุณภาพดี และเพิ่มขีดความสามารถของโรงงานในการ แข่งขันกับตลาดต่างประเทศได้สูงขึ้น และคาดหวังว่าจะ เป็นการเพิ่มมูลค่าให้กับมะม่วงสำหรับเกษตรกรผู้ปลูกต่อไป

วัตถุประสงค์ของการวิจัย

เพื่อประเมินสายต้นมะม่วงแก้วที่มีคุณลักษณะ เหมาะสมต่อการแปรรูปเป็นมะม่วงอบแห้ง

อุปกรณ์และวิธีการ

ใช้มะม่วงแก้วสายต้นคัดของเกษตรกร 4 จังหวัด ภาคเหนือตอนบน ที่อยู่ระหว่างการปรับปรุงพันธุ์ของธวัชชัย และคณะ (2544) จำนวน 5 สายต้น ได้แก่ $M C C 15$ (ลำพูน) $M C C 65$ (น่าน) $M C C 75$ (เชียงใหม่) $M C C 87$ (น่าน) และแก้วศรีสะเกษ หรือ ศก 007 (ลำปาง) วางแผน การทดลองแบบสุมสมบูรณ์ ให้แต่ละสายต้นเป็นวิธีการ ทดลอง จำนวน 4 ซ้ำ เก็บตัวอย่างผลผลิตโดยสุม่มเก็บผล ให้กระจายทั่วทั้งต้น บันทึกข้อมูล นำผลที่ได้ทั้งหมดมาชั่ง เพื่อหาน้ำหนักสดต่อผล ตรวจแยกผลในน้ำ เพื่อหาความ สม่ำเสมอในการสุกแก่ สุมผลแก่จัดจำนวน 5 ผล ไปวัด ความถ่วงจำเพาะ (ถ.พ.) นำผลที่แก่จัดและผลสุกมาวัด และวิเคราะห์ในห้องปฏิบัติการ แล้วนำผลแก่จัดที่ได้มา แปรรูปเป็นมะม่วงอบแห้งตามวิธีของ ธีรวัลย์ และอังคณา (2543) และทดสอบตามเกณฑ์มาตรฐานผลิตภัณฑ์ อุตสาหกรรมผลไม้อบแห้ง (มอก. 919-2532) ได้แก่ วัด เปอร์เซ็นต์ความชื้น หลังจากนั้นนำผลิตภัณฑ์มา ประเมินผลด้านประสาทสัมผัสด้วยวิธี hedonic scale ใช้ ผู้ประเมินหรือผู้ทดสอบชิมที่ผ่านการฝืกอบรม 15 คน นำ

ข้อมูลมาวิเคราะห์ความแปรปรวน (analysis of variance) และเปรียบเทียบระหว่างค่าเฉลี่ยของวิธีการทดลองด้วย วิธี Least Significant Difference (LSD) ที่ระดับความ เชื่อมั่น 95% ส่วนการประเมินผลทางประสาทสัมผัสของ มะม่วงอบแห้ง วิเคราะห์ความแปรปรวน (analysis of variance) และเปรียบเทียบระหว่างค่าเฉลี่ยของวิธีการ ทดลองด้วยวิธี Duncan's Multiple Range Test (DMRT) ที่ระดับความเชื่อมั่น 95% โดยใช้โปรแกรมสำเร็จรูป SPSS V. 10 ในการวิเคราะห์ ทำการศึกษา ณ สถาบันวิจัย และฝึกอบรมการเกษตรลำปาง มหาวิทยาลัยเทคโนโลยี ราชมงคลล้านนา จ.ลำปาง และห้องปฏิบัติการ ภาควิชา พืชสวน คณะเกษตรศาสตร์ มหาวิทยาลัยเซียงใหม่ ดำเนินการระหว่าง เดือนพฤษภาคม พ.ศ. 2545 ถึง เดือน พฤษภาคม พ.ศ. 2546

ผลและวิจารณ์

น้ำหนักผลแก่จัด มะม่วงแก้วทั้ง 5 สายต้น เป็นสายต้นที่ได้รับการประเมินในเบื้องต้นมาก่อนแล้วว่า มีคุณสมบัติดี (ธวัชชัย และคณะ, 2544) มีน้ำหนักผล อยู่ ในช่วง 164.5-271.4 กรัม ความแปรปรวนของน้ำหนักผล นี้พบทั้งบนต้นเดียวกันและระหว่างสายต้น มะม่วงแก้ว สามารถแบ่งกลุ่มตามขนาดผลได้ 3 กลุ่ม คือ กลุ่มสายต้น ที่มีผลขนาด 3-4 ผล/กก. (251-333 กรัม/ผล) คือ ศก 007 กลุ่มผลขนาด 4-6 ผล/กก. (167-250 กรัม/ผล) คือ $M C C 87 M C C 75$ และ MCC65 กลุ่มผลขนาด 7-8 ผล/กก. (น้อยกว่า 167 กรัม/ผล) คือ $M C C 15$ แต่มะม่วงแก้วทั้ง 5 สายต้น มีอายุของต้น สภาพแวดล้อม และการจัดการ แตกต่างกัน จึงไม่สามารถนำน้ำหนักผลมาเปรียบเทียบ กันได้โดยตรง (ตารางที่ 1) อย่างไรก็ตามถือว่ามะม่วงแก้ว มีน้ำหนักผลปานกลาง เมื่อเปรียบเทียบกับน้ำหนักผลของ มะม่วงอุตสาหกรรมพันธุ์อื่น เช่น สามปี 106.3-134.2 กรัม/ผล (อภินันท์ และคณะ, 2547) ตลับนาก $340-380$ กรัม/ผล และ มรกต 200-250 กรัม/ผล (สัมฤทธิ์ และคณะ, 2531)

Table 1 Fruit weight, uniformity of peel color, fruit firmness, total soluble solids (TSS) and pH of 5 fully mature Kaew mango clones from the growers' orchard in the Upper North.

Clone No.	Fruit weight (g)	Uniformity of peel color (\%)	Fruit firmness $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	SS $\left({ }^{\circ} \mathrm{Brix}\right)$	pH
MCC15	164.5 ± 15.2	73.8 ± 4.74	12.1 ± 1.84	10.7 ± 0.57	3.47 ± 0.09
MCC65	194.0 ± 34.3	85.0 ± 5.50	11.3 ± 1.06	9.75 ± 1.51	3.40 ± 0.12
MCC75	189.3 ± 28.3	90.0 ± 0.00	14.0 ± 1.46	8.72 ± 0.80	3.54 ± 0.10
MCC87	216.1 ± 24.1	65.0 ± 5.30	15.8 ± 1.98	10.0 ± 0.48	3.62 ± 0.21
SK007	271.4 ± 20.8	90.0 ± 0.00	15.0 ± 1.43	8.48 ± 0.38	3.22 ± 0.06

Remarks: Numbers are means \pm standard deviation

ความสม่ำเสมอสีผิวผลแก่จัด พบว่า มะม่วง แก้วทั้ง 5 สายต้นมีค่าร้อยละความสม่ำเสมอสีผิวผลอยู่ ในช่วง $65.0-90.0$ มะม่วงแก้วกลุ่มสายต้นที่มีสีผิวผลสวย และสม่ำเสมอดี (สีเขียวเข้ม นวล สม่ำเสมอ ไม่ด่าง) คือ MCC65 MCC75 และ ศก 007 มีค่าร้อยละความ สม่ำเสมอสีผิว 85,90 และ 90 ตามลำดับ (ตารางที่ 1) ส่วนสายต้น $\mathrm{MCC87}$ มีความสม่ำเสมอของสีผิวผล ค่อนข้างน้อย ร้อยละ 65.0 เนื่องจากผิวผลมีสีเขียวอ่อน และ ผิวขรุขระ เมื่อแก่จัดมะม่วงแก้วมีผิวผลเป็นสีเขียวปน เหลือง เป็นคุณลักษณะที่ต้องการในอุตสาหกรรมแปรรูป มะม่วง (ธวัชชัย และคณะ, 2545)

ความแน่นเนื้อผลแก่จัด พบว่า มะม่วงแก้ว ผลแก่จัดทั้ง 5 สายต้น มีค่าความแน่นเนื้ออยู่ในช่วง 11.3 15.8 กก./ตร.ซม. (ตารางที่ 1) กลุ่มสายต้นที่มีค่าความ แน่นเนื้อโดดเด่น คือ MCC87 ศก 007 และ MCC75 ค่าความแน่นเนื้อที่วัดได้บอกถึงเนื้อที่แน่นไม่เละ ความ แน่นเนื้อที่ค่อนข้างสูงเป็นคุณลักษณะที่ต้องการยิ่งของ อุตสาหกรรมแปรรูป และถือเป็นลักษณะเด่นของมะม่วง แก้วที่สามารถถ่ายทอดลักษณะทางพันธุกรรมนี้ไปสูต้น ลูกได้สูง (รุ่งทิพย์ และคณะ, 2546) เมื่อเปรียบเทียบกับ มะม่วงอุตสาหกรรมพันธุ์อื่น $ๆ$ เช่น สามปี มีความแน่น เนื้อเพียง 6.52-8.19 กก./ตร.ซม. (อภินันท์ และคณะ, 2547)

ปริมาณของแข็งที่ละลายน้ำได้ (total soluble solids: TSS) พบว่า มะม่วงผลแก่จัดทั้ง 5 สายต้น มีค่า TSS อยู่ในช่วง 8.48-10.7 องศาบริกซ์ (ตารางที่ 1) สายต้น

ที่มีค่า TSS ที่ค่อนข้างสูงคือ $M C C 15$ และ $M C C 87$ ค่า TSS บ่งชี้ถึงปริมาณน้ำตาลหรือความหวานในเนื้อมะม่วง (ธวัชชัย และคณะ, 2545) มะม่วงที่เหมาะสำหรับการแปรรูป โดยทั่วไปยกเว้นมะม่วงดอง ควรจะมีค่า TSS สูง (มณฑาทิพย์ และคณะ, 2541) ปริมาณน้ำตาลที่สูงในมะม่วงผลแก่ จัดเป็นคุณลักษณะที่เหมาะสมเมื่อนำไปแปรรูปเป็น มะม่วงอบแห้ง เนื่องจากจะได้ผลิตภัณฑ์มะม่วงอบแห้ง รสชาติที่ดี อย่างไรก็ตามเมื่อเปรียบเทียบกับมะม่วงสามปี ซึ่งมีค่า TSS อยู่ในช่วง 7.29-8.11 องศาบริกซ์ (อภินันท์ และคณะ, 2547) ถือว่ามีค่าต่ำกว่ามะม่วงแก้วทั้ง 5 สายต้นเล็กน้อย

ค่าความเป็นกรด-เบส (pH) พบว่า มะม่วงแก้ว ทั้ง 5 สายต้น มีค่า pH อยู่ในช่วง 3.22-3.62 (ตารางที่ 1) ซึ่งถือ่าใกล้เคียงกัน ค่านี้เป็นข้อมูลส่วนหนึ่งที่บงงี้รสชาติ หากเนื้อมะม่วงมีค่า pH ต่ำมะม่วงจะมีรสเปรี้ยว ในกรณี อุตสาหกรรมแปรรูปทั่วไปต้องการมะม่วงแก้วที่มีค่า pH ต่ำ (ธวัชชัย และคณะ, 2545) มะม่วงพันโุ์อุตสาหกรรม เช่น สามปี มีค่า pH ต่ำกว่า 4.5 (สัมฤทธิ์ และคณะ, 2536)

เปอร์เซ็นต์เปลือก พบว่า มะม่วงแก้วทั้ง 5 สายต้น มีเปอร์เซ็นต์เปลือก $12.5-14.6 \%$ สายต้นที่มี เปอร์เซ็นต์เปลือกค่อนข้างน้อยวัดได้ต่ำกว่า 14% คือ MCC87 MCC75 และ ศก 007 (ตารางที่ 2) ลักษณะของ มะม่วงที่เหมาะสำหรับแปรููปควรมีเปอร์เซ็นต์เปลือกต่ำ (ธวัชชัย และคณะ, 2545) มะม่วงพันธุ์ดุตสาหกรรม เช่น

มรกต มีค่าเท่ากับ 23.2% สามปี มีค่าเท่ากับ 26.8% (อภินันท์ และคณะ, 2547) เมื่อเปรียบเทียบกันแล้วถือว่า มะม่วงแก้วทั้ง 5 สายต้น มีเปอร์เซ็นต์เปลือกที่น้อยกว่า

เปอร์เซ็นต์เนื้อ พบว่า มะม่วงแก้ว 5 สายต้น มีเปอร์เซ็นต์เนื้อ $64.6-72.3 \%$ มะม่วงแก้วสายต้นที่มี เปอร์เซ็นต์เนื้อค่อนข้างน้อย วัดได้ 64.6% คือ ศก 007 (ตารางที่ 2) ส่วนสายต้นที่เหลือมีเปอร์เซ็นต์เนื้อที่ใกล้เคียง กันหรือสูงกว่า 65% มณฑาทิพย์ และคณะ (2541) ระบุว่า มะม่วงที่เหมาะสำหรับแปรรูปเป็นเนคต้า ควรมีเปอร์เซ็นต์ เนื้ออย่างน้อย 52.7% ดังนั้นมะม่วงแก้วทั้ง 5 สายต้น จึงอยู่ในเกณฑ์ที่เหมาะสำหรับแปรรูปเป็นผลิตภัณฑ์ ต่าง ๆ ได้ ขณะที่มะม่วงอุตสาหกรรมพันธุ์อื่น เช่น มรกต มีเนื้อ 59.8% (สัมฤทธิ์ และคณะ, 2531) สามปี มีเนื้อ 82.2% (สัมฤทธิ์ และคณะ, 2536)

เปอร์เซ็นต์เมล็ด ของมะม่วงแก้ว 5 สายต้น มีค่าระหว่าง 13.7-18.6\% สายต้นที่มีเปอร์เซ็นต์เมล็ด ค่อนข้างน้อย วัดได้ต่ำกว่า 15.0% คือ MCC87 และ
$M C C 75$ (ตารางที่ 2) สายต้นที่มีเปอร์เซ็นต์เมล็ดน้อยเป็น ลักษณะที่ดี เพราะทำให้สัดสวนของเนื้อมีมาก เหมาะ สำหรับแปรรูปเป็นมะม่วงอบแห้ง (มณฑาทิพย์ และคณะ 2541) ส่วนมะม่วงอุตสาหกรรมพันธุ์อื่น เช่น มรกต มี เมล็ด 17% (สัมฤทธิ์ และคณะ, 2531) สามปี มีเมล็ด 27.8% (อภินันท์ และคณะ, 2547)

น้ำหนักเนื้อมะม่วงหลังอบแห้ง เมื่อ เปรียบเทียบน้ำหนักเนื้อก่อนอบแห้ง 1,000 กรัม หลังอบ แล้วมะม่วงทั้ง 5 สายต้น มีน้ำหนักเหลืออยู่ในช่วง $380-$ 453 กรัม (ตารางที่ 3) มะม่วงอบแห้งสายต้น MCC75 มี น้ำหนักเหลือหลังอบมากที่สุด 453 กรัม รองลงมาคือ สาย ต้น MCC87 น้ำหนัก 401 กรัม ส่วนหนึ่งมีสาเหตุมาจาก การที่ทั้งสองสายต้นมีเปอร์เซ็นต์เนื้อค่อนข้างสูง (ตารางที่ 2) ทำให้พิจารณาได้ว่า สายต้น MCC 75 มีความ เหมาะสมมากที่สุดในกลุ่มสำหรับการแปรรูปเป็นมะม่วง อบแห้ง เนื่องจากเมื่อแปรรูปเป็นมะม่วงแห้งแล้วได้ น้ำหนักเนื้อหลังอบมาก

Table 2 Percent of peel, flesh and seed of 5 Kaew mango clones.

Clone No.	Peel (\% by weight)	Flesh (\% by weight)	Seed (\% by weight)
MCC15	14.6 ± 0.96	67.1 ± 2.75	17.5 ± 1.04
MCC65	14.5 ± 0.75	65.2 ± 2.40	18.6 ± 2.06
MCC75	13.1 ± 1.02	70.4 ± 4.34	14.9 ± 2.07
MCC87	12.5 ± 0.91	72.3 ± 2.23	13.7 ± 2.10
SK007	13.2 ± 1.61	64.6 ± 3.37	16.5 ± 3.98

Remarks: Numbers are means \pm standard deviation

Table 3 Remained pulp dry weight per fresh weight 1,000 grams.

Clone No.	Pulp dry weight (g.)
MCC15	380 c
MCC65	387 c
MCC75	453 a
MCC87	401 b
SK007	382 c
LSD $_{0.05}$	10.6
\%CV	1.76

Remarks: Means within the column followed by the different letter were significant difference tested by least significant difference at $P=0.05 \%$

Abstract

ค่าสี มะม่วงอบแห้งทั้ง 5 สายต้น วัดค่าสีเป็น องศาสี (hue) มีค่าอยู่ในช่วง 75.2-77.8 กลุ่มสายต้นที่มี ค่า hue สูงโดดเด่น ได้แก่ ศก 007 MCC75 และ MCC87 ค่า hue ที่สูงแสดงว่า มีสีเหลืองออกส้ม ความสว่างของสี (ப்) พบว่า มีค่า 43.3-48.5 (ตารางที่ 4) กลุ่นสายต้นที่มีค่า L สูง หรือสีเนื้อมะม่วงอบแห้งที่สว่าง ได้แก่ ศก 007 $\mathrm{MCC75} \mathrm{MCC} 15$ และ $\mathrm{MCC87}$ ซึ่งมีค่า L สูงกว่าอย่างมี นัยสำคัญกับสายต้น $M C C 65$ ความเข้มสี (croma) มีค่า อยู่ในช่วง $36.0-42.9$ สายต้นที่มีค่า croma สูงโดดเด่น คือ ศก 007 มีค่าเท่ากับ 42.9 แตกต่างอย่างมีนัยสำคัญ $(P<0.05)$ จากสายต้น $\mathrm{MCC87}$ ค่า croma สูง แสดงว่า มี สีเหลืองเข้ม สายต้นที่อบแห้งแล้วได้ผลิตภัณฑ์สีเหลือง เข้มน่ารับประทาน ได้แก่ ศก 007 และ $M C C 75$ มะม่วง ฮบแห้งสายต้น ศก 007 เมื่อวัดค่าสี มีสีเหลืองทองสว่าง ส่วนสายต้น $M C C 75$ มีสีเหลืองส้มสว่าง สาเหตุที่มะม่วง แก้ว สายต้น ศก 007 และ $M C C 75$ เมื่ออบแห้งแล้วมีสี เหลืองน่ารับประทาน ส่วนหนึ่งเป็นเพราะสีผิวผลแก่จัด ทั้งสองสายต้นมีความสม่ำเสมอกันถึง 90 เปอร์เซ็นต์ และ สีผิวผลแก่จัดเป็นสีเขียวเข้ม สีเนื้อผลแก่จัด สายต้น ศก 007 เป็น สีเหลืองทองสว่าง ขณะที่สายต้น $M C C 75$ เป็น สีเหลืองส้นสว่าง

ความชื้นของมะม่วงอบแห้ง เปอร์เซ็นต์ ความชื้นของมะม่วงอบแห้งทั้ง 5 สายต้น พบว่า ทั้งหมดมี ค่าไม่เกิน 16.1% สายต้นที่มีเปอร์เซ็นต์ความซื้นเหลือน้อย ที่สุด 9.6% คือศก 007 สายต้นที่มีเปอร์เซ็นต์ความชื้น สูงสุด 16.1% คือ MCC65 ส่วนสายต้นที่มีเปอร์เซ็นต์ ความชื้นอยู่ในระดับปานกลางคือ $M C C 15 M C C 87$ และ $M C C 75$ ซึ่งมีค่า 12.513 .3 และ 13.7% ตามลำดับ (ตาราง ที่ 5) ตามมาตรฐานผลิตภัณฑ์อุตสาหกรรม (มอก. 9192532) กำหนดไว้ว่า ผลไม้อบแห้งต้องมีเปอร์เซ็นต์ความชื้น ไม่เกิน 18% จึงถือว่ามะม่วงอบแห้งทั้ง 5 สายต้น มี เปอร์เซ็นต์ความชื้นอยู่ในเกณฑ์มาตรฐาน สำหรับความซื้น คือ สารที่สูญเสียไปจากอาหาร เมื่อนำอาหารไปอบ น้ำหนักที่สูญหายไปจากอาหารซึ่งเข้าใจว่าเป็นน้ำนั้น ความจริงแล้วเป็นสารที่ระเหยได้ทั้งหมด (total volatile matter) ความชื้นที่เหลืออยู่มีผลโดยตรงต่อเนื้อสัมผัสของ มะม่วงอบแห้ง กล่าวคือ อาจทำให้มีเนื้อสัมผัสที่เหนียว อ่อนนุ่ม หรือแข็งกระด้าง มะม่วงอบแห้งที่มีความซื้น $12.5-$ 13.7% ถือว่ามีค่าปานกลาง ทำให้สายต้น MCC15 $M C C 87$ และ $M C C 75$ มีเนื้อสัมผัสของมะม่วงอบแห้งอ่อน นุ่ม แตกต่างจากมะม่วงอบแห้งสายต้น ศก 007 ซึ่งมีเนื้อ สัมผัสค่อนข้างแข็ง

Table 4 Color values of dehydrated fruit of 5 Kaew mango clones.

Clone No.	Color		
	hue	L	croma
MCC15	75.2 b	48.0 a	39.8 ab
MCC65	74.3 b	43.3 b	40.1 ab
MCC75	77.8 a	48.3 a	37.9 ab
MCC87	75.7 ab	47.7 a	36.0 b
SK007 $_{\text {LSD }_{0.05}}$	77.7 a	48.5 a	42.9 a
$\%$ CV	2.46	2.50	6.88

Remarks: Means within the column followed by the different letter were significant difference tested by least significant difference at

$$
P=0.05 \%
$$

Table 5 Percent moisture content of dehydrated fruit of 5 Kaew mango clones.

Clone No.	Moisture content (\%)
MCC15	12.5 c
MCC65	16.1 a
MCC75	13.7 b
MCC87	13.3 bc
SK007	9.6 d
LSD $_{0.05}$	1.15
\%CV	5.85

Remarks: Means within the column followed by the different letter were significant difference tested by least significant difference at $P=0.05 \%$

การประเมินทางด้านประสาทสัมผัส

สี การประเมินทางด้านประสาทสัมผัสของมะม่วง อบแห้ง 5 สายต้น พบว่า ผู้ประเมินมีความชอบในเรื่องสี แตกต่างกัน สายต้น $M C C 75$ ได้รับคะแนนความชอบด้าน สีมากที่สุด 7.53 คะแนน ซึ่งเป็นระดับความชอบปาน กลาง แต่สูงกว่ามะม่วงแก้วที่เหลืออีก 4 สายต้นอย่างมี นัยสำคัญ ที่มีค่า $5.15-5.52$ คะแนน (ตารางที่ 6) ซึ่งเป็น ความชอบระดับเฉย ๆ ในมะม่วงอบแห้งสีของผลิตภัณฑ์ จะต้องเป็นสีเหลืองเข้มน่ารับประทาน และเป็นสิ่งดึงดูด ความสนใจของผู้บริโภคได้ดี ซึ่งสอดคล้องกับค่าสีเนื้อ ขณะที่ผลแก่จัด และสายต้น $M C C 75$ มีสีมะม่วงอบแห้ง เป็นสีเหลืองส้มสว่าง

กลิ่น ของมะม่วงอบแห้ง 5 สายต้น พบว่า มะม่วงอบแห้งได้รับคะแนนความชอบอยู่ในช่วง $5.35-$ 6.77 คะแนน สายต้น $M C C 75$ ได้รับคะแนนความชอบ มากที่สุด (มีกลิ่นหอมน่ารับประทาน) คือ 6.77 คะแนน ซึ่ง อยู่ในช่วงชอบเล็กน้อยถึงชอบปานกลาง ส่วนมะม่วงแก้ว อบแห้งอีก 4 สายต้น ผู้ประเมินชอบกลิ่นในระดับเฉย ๆ ชอบเล็กน้อย (ตารางที่ 6) กลิ่นของมะม่วงแก้วอบแห้ง เป็นกลิ่นที่ ให้ความรู้สึกในขณะรับประทานซึ่งไม่สามารถ ปรุงแต่งได้

รสชาติ ของมะม่วงอบแห้ง พบว่า ผู้ประเมินให้ คะแนนความชอบในด้านรสซาติของมะม่วงอบแห้ง ในช่วง 5.15-7.20 คะแนน สายต้น $M C C 75$ ได้รับคะแนนมาก ที่สุด 7.20 คะแนน มีความหมายว่า ชอบปานกลาง-ชอบ มาก ซึ่งสูงกว่าสายต้นอื่นอย่างมีนัยสำคัญ $(P<0.05)$ (ตาางงที่ 6) มะม่วงอบแห้ง สายต้น $M C C 75$ มีรสหวานอม เปรี้ยว ส่วน 4 สายต้น ที่เหลือมีรสชาติค่อนไปทางเปรี้ยว นำหวาน

เนื้อสัมผัส ของมะม่วงอบเห้ง พบว่า มะม่วง อบแห้งได้รับคะแนนอยู่ในช่วง $5.38-7.12$ คะแนน โดยที่ สายต้น $M C C 75$ ได้รับคะแนนความชอบด้านเนื้อสัมผัส มากที่สุด 7.12 คะแนน มีความหมายว่า ชอบปานกลางชอบมาก แสดงถึงเนื้อสัมผัสที่อ่อนนุ่ม ไม่เหนียวหรือแข็ง กระด้างจนเกินไป (ตารางที่ 6) การยอมรับรวมของการ ประเมินทางด้านประสาทสัมผัส ทั้งด้าน สี กลิ่น รสชาติ เนื้อสัมผัส มีคะแนนความชอบ $5.95-7.50$ คะแนน มะม่วง แก้วอบแห้งสายต้น $M C C 75$ ได้รับคะแนนการยอมรับรวม มากที่สุด 7.50 คะแนน (ตารางที่ 6) มีความหมายว่า ชอบ ปานกลาง-ชอบมาก แต่มีค่าสูงกว่าอีก 4 สายต้น อย่างมี นัยสำคัญทางสถิติ ($P<0.05$)

Table 6 Sensory evaluation of dehydrated fruit of 5 Kaew mango clones.

Clone No.	Scores				
	Color	Flavor	Taste	Texture	Overall acceptance
MCC15	5.17 c	5.35 b	5.15 c	5.38 c	6.18 b
MCC65	5.50 b	5.37 b	5.40 bc	6.10 b	6.33 b
MCC75	7.53 a	6.77 a	7.20 a	7.12 a	7.50 a
MCC87	5.52 b	5.43 b	5.57 b	5.95 b	6.18 b
SK007	5.15 c	5.37 b	5.42 bc	5.50 c	5.95 b
Mean	5.77	5.66	5.74	6.01	6.43
F(panelists)	1.51	0.85	0.65	2.46	0.87
F(treatments)	79.8	24.3	40.7	28.5	17.9

$9=$ Like extremely $8=$ Like very much $7=$ Like moderately $6=$ Like slightly $5=$ Neither like nor dislike
$4=$ Dislike slightly $3=$ Dislike moderately $2=$ Dislike very much $1=$ Dislike extremely
Remarks: Means within the column followed by the different letter were significant difference tested by Duncan's multiple range test at $P=0.05 \%$

สรุป

ในการคัดเลือกมะม่วงแก้วสายต้นคัดที่เหมาะสม สำหรับการแปรรูปเป็นมะม่วงอบแห้ง ได้ใช้คุณลักษณะ หลายประการประกอบการตัดสินใจ ทั้งลักษณะทั่วไปของ ผลขณะแก่จัดและผลสุก และคุณสมบัติของผลิตภัณฑ์ที่ แปรรูปแล้ว จากการประเมินมะม่วงแก้วทั้งสิ้น 5 สายต้น ใน 4 จังหวัดภาคเหนือตอนบน พบว่า $M C C 75$ เป็นสาย ต้นที่สามารถแปรรูปเป็นมะม่วงอบแห้งได้ดีกว่าสายต้น อื่น ด้วยเหตุผลที่มีขนาดผลปานกลาง ($4-5$ ผล/กก.) หรือ มี น้ำหนัก 189.3 ± 28.3 กรัม/ผล ผิวผลมีความสม่ำเสมอ สูงโดยเฉพาะในผลแก่จัด วัดได้ร้อยละ 90 ความแน่นเนื้อ สูง วัดได้ 14.0 ± 1.46 กก./ตร.ซม. ผิวผลเป็นสีเขียวเข้ม ขณะ แก่จัดและสีเหลืองเข้มขณะสุก เนื้อสีเหลืองนวลเมื่อ แก่จัดและสีเหลืองส้มเมื่อสุก ปริมาณของแข็งที่ละลายน้ำ ได้ในผลแก่จัดวัดได้ 8.72 ± 0.80 องศาบริกซ์ เปอร์เซ็นต์ เปลือกน้อย วัดได้ร้อยละ 13.1 ± 1.02 โดยน้ำหนัก มีเนื้อ มาก วัดได้ร้อยละ 70.4 ± 4.34 โดยน้ำหนัก เมล็ดขนาดเล็ก เปอร์เซ็นต์เมล็ดน้อย วัดได้ร้อยละ 14.9 ± 2.07 โดยน้ำหนัก

หลังเป็นผลิตภัณฑ์แล้วมีเปอร์เซ็นต์ความซื้นอยู่ในระดับ ปานกลาง วัดได้ร้อยละ 13.7 น้ำหนักเนื้อเหลือหลังการ อบแห้งสูง วัดได้ 453 กรัม จากเนื้อก่อนอบ 1,000 กรัม เนื้อสีเหลืองเข้ม กลิ่นหอม รสชาติดี เนื้อสัมผัสอ่อนนุ่ม ไม่เหนียวหรือแข็งกระด้างเกินไป ผู้ประเมินได้ไห้คะแนน ความชอบด้าน สีกลิ่น รสชาติ เนื้อสัมผัส และการยอมรับ รวมมากที่สุด ดังนั้นจึงน่าที่จะสงเสริมให้มีการปลูก มะม่วงแก้วสายต้น $M C C 75$ เพื่อใช้ในอุตสาหกรรมการ แปรููปเป็นมะม่วงอบแห้งต่อไป

เอกสารอ้างอิง

กรมศุลกากร. 2545. รายงานตามกลุ่มสินค้าพิเศษ: มะม่วง ข้อมูลประจำช่วงวันที่ 01/01/2002 ถึง $12 / 31 / 2002$ [ระบบออนไลน์]. แหล่งข้อมูล http://wnw.nfi.or.th/import_export/ (27 ตุลาคม 2546).

ธวัชชัย รัตน์ชเลศ, พฤกษ์ ยิบมันตะสิริ และ รุ่งทิพย์ อุทุมพันธ์. 2544. รายงานความก้าวหน้างานวิจัย

[^1]สัมฤทธิ์ เพื่องจันทร์, ฉลองชัย แบเประเสริฐ, โสพส จินดาประสสริฐ, ทวีเกียรติ ยิ้มสวสดิ์, อำนวย คำตื้อ, สมเกียรติ จันทรกระจ่าง, แววจักร กองพลพรหม, ประเสริฐ อนุพันธุ์, ไสว สุหร่าย และ วิจิตร วังใน. 2531. "มะม่วงพันธุ์ออนซอน, มรกต และพญา ก้อม" การปรับปรุงพันธุ์มะม่วงเพื่อการค้าและ อุตสาหกรรม. ว. วิทย. กษ. 21 (6): 415-425.
สัมฤทธิ์ เฟื่องจันทร์, ทวีเกียรติ ยิ้มสวัสดิ์ และ โสพส จินดาประเสริฐ. 2536. การคัดเลือกพันโุ์มะม่วง เพื่อใช้เป็นพันธุ์รับประทานผลสด พันธุ์แปรรูป และต้นตอ. แก่นเกษตร 21(3-4): 131-140.
สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. 2532. มาตรฐานผลิตภัณฑ์อุตสาหกรรมผลไม้แห้ง มอก. 919-2532. กระทรวงอุตสาหกรรม, กรุงเทพฯ. 13 หน้า.
สำนักงานสงเสริมและพัฒนาการเกษตร เขตที่ 6. 2545 . ข้อมูลมะม่วงแก้วทั่วประเทศในปี 2545. [ระบบ ออนไลน์]. แหล่งข้อมูล http://ndoae.doae.go.th (27 ตุลาคม 2546).
อภินันท์ เมฆบังวัน, สันติ ช่างเจรจา และ ชิติ ศรีตนทิพย์. 2547. การพัฒนาคุณภาพของผลมะม่วงสามปี โดยใช้ปุ๋ยโพแทสเซียม. สถาบันเทคโนโลยีราชมงคล สถาบันวิจัยและฝึกอบรมการเกษตรลำปาง, ลำปาง. 65 หน้า.

[^0]: " ภาควิชาพืชสวน คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่ จ. เชียงใหม่ 50200
 "Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.

[^1]: ครั้งที่ 3 .โครงการ การคัดเลือก การพัฒนา และ การขยายพันธุ์มะม่วงแก้วสำหรับที่ดอนอาศัย น้ำฝน. ศูนย์วิจัยเพื่อเพิ่มผลผลิตทางเกษตร คณะ เกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่, เชียงใหม่. 88 หน้า.
 ธวัชชัย รัตน์ๆเลศ, พฤกษ์ ยิบมันตะสิริ และ รุ่งทิพย์ จุทุมพันธ์. 2545 . รายงานวิจัยฉบับสมบูรณ์ ฉบับ ที่ 1. โครงการ การคัดเลือก การพัฒนา และการ ขยายพันธุ์มะม่วงแก้วสำหรับที่ดอนอาศัยน้ำฝน. ศูนย์วิจัยเพื่อเพิ่มผลผลิตทางเกษตร คณะ เกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่, เซียงใหม่. 78 หน้า.
 ธีรวัลย์ ชาญฤทธิเสน และ อังคณา เชวงภูษิต. 2543. เอกสารประกอบการฝึกงานนักศึกษา สาขาวิชา วิทยาศาสตร์และเทคโนโลยีการอาหาร สถาบันวิจัยและฝึกอบรมการเกษตรลำปาง สถาบันเทคโนโลยีราชมงคล, ลำปาง. 33 หน้า.
 มณฑาทิพย์ ยุ่นฉลาด, ฉลองชัย แบบประเสิฐิ, กาญจนารัตน์ ทวีสุข, ชิดชม ฮิรางะ และ ระจิตร จุทากรณ์. 2541. การประเมินทางด้านประสาทสัมผัสของน้ำ มะม่วงพร้อมดื่มพันธุ์ลูกผสมบรรจุกระป๋อง. อาหาร 28(3): 179-189.
 รุ่งทิพย์ อุทุมพันธ์, กัวชชัย รัตน์ชเลศ และ พฤกษ์ ยิบมันตะสิริ. 2546. การประเมินอัตราซ้ำของลักษณะเศรษฐิจ ในมะม่วงแก้ว. ว. วิทย. กษ. $34(1-3$ พิเศษ): 145-148.

